
An Efficient Implementation of Deep Convolutional
Neural Networks on a Mobile Coprocessor

Jonghoon Jin∗, Vinayak Gokhale∗, Aysegul Dundar†, Bharadwaj Krishnamurthy∗,
Berin Martini† and Eugenio Culurciello∗†

∗Electrical and Computer Engineering, Purdue University
†Weldon School of Biomedical Engineering, Purdue University

Abstract—In this paper we present a hardware accelerated
real-time implementation of deep convolutional neural networks
(DCNNs). DCNNs are becoming popular because of advances
in the processing capabilities of general purpose processors.
However, DCNNs produce hundreds of intermediate results
whose constant memory accesses result in inefficient use of
general purpose processor hardware. By using an efficient rout-
ing strategy, we are able to maximize utilization of available
hardware resources but also obtain high performance in real
world applications. Our system, consisting of an ARM Cortex-
A9 processor and a coprocessor, is capable of a peak performance
of 40 G-ops/s while consuming less than 4 W of power. The entire
platform is in a small form factor which, combined with its
high performance at low power consumption makes it feasible to
use this hardware in applications like micro-UAVs, surveillance
systems and autonomous robots.

I. INTRODUCTION

Artificial vision systems find applications in autonomous
robots, security systems, micro-UAVs and more recently,
mobile phones and automobiles. These applications require
algorithms that can recognize objects with a high degree of
accuracy while being able to execute in real-time. Many recent
algorithms have shown promise for use in visual understand-
ing. For example, SIFT and SURF feature extractors [1], [2],
hierarchical models of the visual cortex (HMAX) [3] and deep
convolutional neural networks (DCNNs) [4]–[6] can perform
robust feature extractions for recognition, detection and scene
understanding.

Recently DCNNs, which consist of hundreds of convolu-
tion planes across multiple layers, have shown great promise
in visual understanding [4] as well as artificial intelligence
[7]. However, DCNNs are computationally very expensive and
require high performance computers or graphics processing
units (GPUs) to run in real time. For mobile, low-power
platforms like smartphones, computations are usually sent to
off-site servers systems for processing. This requires constant
and reliable connectivity with the off-site server which is not a
guarantee. This constraint limits the use of DCNNs in mobile
environments where very less lag is allowed between the input
and the result, such as when driving automobiles. Mobile
processors have becoming increasingly powerful in the last
decade. However, their real time performance is application
dependent and can be much lower than their peak performance.
This is mainly the result of underutilization of hardware
resources due cache misses, frequent, unpredictable branches
and a large amount of memory accesses. For these reasons, it
is difficult to process DCNNs in real-time on current mobile,
low-power platforms.

In this work, we present an efficent implementation for
accelerating DCNNs on a mobile platform in a pipelined
manner. Our system is implemented on the Xilinx Zynq-7000
All Programmable SoC which combines two ARM Cortex-A9
cores with an Artix-7 FPGA. Our hardware implementation
allows for maximum utilization of hardware resources which
results in real time performance that is very close to peak
performance.

This paper presents as follows: Section II explains prelim-
inaries. Section III outlines properties of deep convolutional
neural networks. Section IV describes implementation details
and strengths of our design, and section V presents experimen-
tal results and discussions of our hardware.

II. RELATED WORK

Hardware accelerated vision systems implemented on
FPGAs have been described in [8]–[10]. All three works
require a host computer with a PCI connection in order to
function. These cannot easily be embedded inside of small and
lightweight mobile robots. Furthermore, these designs require
large off-chip memories of their own as the communication
bottleneck over PCI when using the host’s memory would
decrease performance.

Similar streaming architectures [11], [12] have been de-
signed to meet the computational demands of DCNNs, and
[12], [13] demonstrates the application of one such system.
Their design on fully programmable logic benefits from flex-
ibility and parallelism while overcoming memory bottlenecks
by using the on-board DDR3 memory. However, they suffer
from slow host-coprocessor data transfer. The vertical off-
board connection used in [12] limits its performance when it
comes to real world applications. A tile structure of processing
elements in [12], [13] facilitates flexible routing. However, not
all connections are essential and this results in unnecessary uti-
lization of FPGA resources. Furthermore, such dense routing
is unfeasible in SoCs where chip area is an important factor.

Compared to these platforms, the system described in this
work uses the Xilinx Zynq SoC which is a shared memory
architecture where the same DDR3 memory can be accessed by
both the software and the FPGA. This platform is well suited
for frequent memory accesses and requires no other system in
order to function. Furthermore, the novelty of this work is the
router network that is specifically targeted to process DCNNs.
The entire platform measures 16.3cm× 13.1cm× 2.6cm and
consumes 3.9W making it a small but powerful system that
can be easily installed in a mobile platform.

III. DEEP CONVOLUTIONAL NEURAL NETWORKS

Deep convolutional neural networks are a class of models
that form a powerful tool to help solve visual classification
problems [4]–[6]. DCNNs consist of multiple layers of convo-
lutions, each comprising between tens and hundreds of filters.
Each convolution layer is interspersed by one sub-sampling
and non-linearity operator. In the first layer, convolutions are
used to extract low-level features, such as edges and textures.
Deeper layers aim at combining the features extracted by the
previous layers to achieve a higher level of abstraction and
detect more complex features. After each convolution layer,
DCNNs use a spatial pooling operator to provide the network
with scale invariance. Spatial pooling also results in subsam-
pling which reduces the number of computations required
in latter layers. Finally, a non-linearity operation serves as
an activation function that helps the classifier to solve non-
linear problems. These operators and their implementations in
hardware are defined in section IV.

IV. HARDWARE IMPLEMENTATION

Our hardware comprises a memory router and the operators
needed for processing DCNNs as shown in figure 1. The
operators are bundled together into a unit called a collection.
Each collection also includes a collection router. These two
routers are explained in detail in the subsections below.

A. Memory Router

The memory router interfaces with three AXI DMA en-
gines and acts as a gateway to the collections. All incoming and
outgoing streams pass through this router. It can be configured
to route incoming data streams to one or more collections. The
memory router can sustain data transfer speeds of 2.2GB/s.
Routing paths are configured via the configuration bus which is
indicated in dark blue in figure 1. This bus is directly controlled
by the ARM through a custom device driver. A software
compiler allocates hardware resources to the data streams. The
configuration order for an entire frame is generated at compile-
time. However, due to the limited availability of resources,
configuration of the hardware is done at run-time.

B. Collection Network

An efficient design of memory routing is important for
large-scale processing systems since such are often limited
by memory bandwidth [14]. The novelty of this design is
the network of collections and their routing strategies. The
collection is the basic processing element in our design that
can be run in parallel. The collection network is comprised of
collections and data paths around them. The router’s design
allows for maximum utilization of each collection resulting in
a peak performance of 20G-ops/sec per collection.

Each collection contains a group of operator blocks that
performs arithmetic operations. This structure is suitable for
DCNNs because these networks typically follow a sequence
of processing steps. Thus, these operators need to be spatially
grouped together in order to avoid unnecessary routing delays
of data streams. This design produces an output of a 1-to-1
convolution plane by a single pass through a collection.

With two collections, two results are produced per memory
access. The time taken to generate one plane is the number

ARM

Processors

Router

Collection

Programmable logic

Router

Collection

Router

Collection

External
Memory

Data BusConfig Bus

Memory Router

Controller

Operator
Blocks

Operator
Blocks

Operator
Blocks

Fig. 1. Overview of the implemented system and data paths. The memory
router is a crossbar switch. A local router in each collection is directly
connected to routers in neighboring collections, thereby constructing a one
dimensional torus-like data streaming network. The group of operator blocks
in each collection contains convolution, max-pooling and non-linear operators.

of pixels in the input divided by the clock frequency of the
collections plus an initial configuration delay. This delay is
negligible compared to the size of the image. Such operation
is possible due to the pipelined nature of the operators which
produce one output per clock cycle and can be run in parallel.
A router inside each collection routes incoming data from the
memory router to the operators. This router also controls the
flow of data from one operator to the next. Finally, it can
also route two data streams to its east and west neighbors.
The FPGA on the XC7Z020 chip holds up to two collections
with a 10× 10 convolution unit (convolver). We can fit more
collections at the cost of having a smaller convolution unit
(7× 7 allows for four collections).

The convolution operation in DCNNs can be generalized
as an N-to-M type as shown in figure 2. This results in two
possible cases when running a feed-forward network. Our
hardware design allows for efficient routing of data in both
cases.

.......

...
1 M

Layer i Layer i+1

(a) 1-to-M convolution

...

...
N M

Layer i Layer i+1

(b) N-to-M convolution

Fig. 2. An example of the 1-to-M and N-to-M cases. These are the two
most commonly encountered cases in DCNNs. A 2D diagram is used to
visualize the relation between convolutional layers for simplicity. Circles
indicate convolutional planes. M and N are respectively 4 and 2 in this
example.

1) N = 1 case: The N = 1 case, as demonstrated in
figure 2(a), occurs when there is one input stream and M filter
kernels. This is typical of the first layer of a DCNN which takes
in a greyscale image as its input. Such a layer would produce

M outputs and no intermediate results. In a 1-to-M convolution,
resources are efficiently handled by minimizing the number of
memory accesses and maximizing collection utilization. One
input stream is routed to multiple collections by the memory
router, as indicated by “data bus” traces in figure 1. It is then
processed by the collection’s operators in a pipelined fashion
before being routed back to the memory router as one output of
the current layer. The memory router then sends this output to
memory where it awaits its turn to be sent back in as an input
to the next layer. For this case, we need only dMC e memory
accesses where M is the number of kernels and C is the
number of collections. In a general purpose processor, this
would result in 3×M memory accesses, one access for each
operator.

Input images are generally large and cannot fit in first level
caches of general purpose processors. Usually they get loaded
into the larger last level cache. While access to these caches
is much faster than main memory access, it is slower than
accessing level one cache. This results in performance that
is not significantly slower than peak performance but is not
optimum either.

2) N > 1 case: The N > 1 case is typical of hidden layers
where the multiple outputs generated by the first layer are sent
in as inputs. This case is shown in figure 2(b). In this case,
the current layer has N inputs and N ×M filter kernels as
shown in figure 2(b). This results in M outputs for the layer.
The multiple 2D convolutions require N 2D convolutions and
their pixel-wise summation to generate one output.

Router

Collection

Router

Collection

Router

Collection

Operator
Blocks

Operator
Blocks

Operator
Blocks

Fig. 3. Example of routing scheme for a 3-to-1 convolution. Inputs are
streamed to each of routers. The input to each router is a stream coming
from the memory router. The output of the operator blocks is the result of a
convolution in the left-most collection. This is an intermediate result. It then
gets combined by pixel-wise addition with the intermediate produced by the
neighboring collection. This process occurs once more before the final output
is produced. The stream flows along the path colored in green, blue, purple
and red in that order. The connections between neighbors facilitate rapid data
transfer between collections.

In our design, each collection has two ports to its east
and west neighbors. These connections, illustrated in figure 3
enable a collection to send a stream to either of its neighbor
without interrupting the memory router or the collection’s
operators. As long as a neighboring collection’s operator is
available, the intermediate result produced does not need to be
sent back to memory either. It can be combined with another
intermediate, effectively reducing memory accesses by a factor
of two (two intermediates being transfered back and forth
between memory and coprocessor).

In contrast, general purpose processors’ performance suf-
fers greatly in this step because of the sheer volume of
intermediates produced. As all intermediates will not fit in any
of the on-chip caches, only some intermediates are cached.

This results in frequent cache misses and memory accesses
which causes significant drop in processor performance. For
example, a 256×256 intermediate is 256 kilobytes in size when
represented in IEEE 754 floating point numbers and a DCNN
hidden layer can produce over a hundred such intermediates.
In contrast, last level caches of even high-end server processors
are a few tens of megabytes in size.

3) Advantage over a grid: Compared to the processing grid
structure described in [13], our design minimizes the number
of global connections by grouping operator blocks but keeps
the essential connections that are used for relaying streams
in order to perform an N-to-M convolution. While having
many connections to adjacent processing tiles gives flexibility
in general processing, it does not necessarily benefit over the
torus collection network (figure 1) when targeting DCNNs as
their sequence of operations is the same, even in different
network architectures. Such optimum routing lets the system
overcome timing violation during hardware synthesis while
also relaxing the complexitiy of scheduling operations. Since
the torus structure casts the problem into a 1D search space
as opposed to 2D space in a grid, much less effort is needed
to find the best solution for the given deep network. For these
reasons, the collection network is an optimum routing strategy
for custom designed hardware for processing DCNNs.

V. EXPERIMENTAL RESULTS

The performance of this system was compared to a system
running an Intel Core i5 2.6GHz CPU, a NVIDIA GeForce
GTX 690 GPU, and an ARM Cortex A9 processor. The
experiments were conducted to demonstrate peak performance
and performance in real-world applications. The applications
used were a face detector and an object tracker [6] while the
filter-bank demonstrates peak performance of this design. The
number of operations in each network is listed in figures 4
and 5 to demonstrate the scale of each network. Performance
per second and performance per watt are used as metrics for
comparison. The results are reported in figure 4 and 5.

We used the Torch7 software [15] for demonstrating per-
formance on different platforms. A 256 × 256 input image1

was used in all applications. The benchmark aimed at max-
imizing the utilization on all platforms so as to record peak
performance possible in each case and equal workload was
assigned to each platform.

Figure 5 demonstrates power efficiency of the platforms.
Our system records the highest performance per watt numbers
in all applications. The GPU can exploit massive parallelism,
but also consumes significantly more power than the other sys-
tems. Since parallelism is mostly obtained by the convolution
operators, larger kernels and images give higher performance
benefits. For this reason, highest performace was measured in
the filter-bank for all platforms except Zynq ARM processor.
Our accelerator was able to deliver 8.2G-ops/s-W in the filter-
bank demonstration that consists of 32 convolution with 10×10
kernels at the first layer.

Performance tends to drop for hidden layers with multiple
inputs. Generally, using many convolutional planes or pro-
cessing deeper layers causes more intermediates to be created

1Torch7 CUDA modules have a 256px limitation for width and height and
are optimized to work in a batch mode.

Filter-bank
(0.39 G-ops/frame)

Face-detector
(0.41 G-ops/frame)

Object-tracker
(0.98 G-ops/frame)

100

101

102

103

P
e
rf

o
rm

a
n
ce

 p
e
r

se
co

n
d
 (

G
o
p
s/

se
c)

Performance vs. Application

Zynq ARM Cortex A9 667MHz

Intel Core i5 2.6GHz

NVIDIA GeForce GTX 690

HW Accelerator (This work)

Fig. 4. Performance per second test over different networks in real-world
applications. Tested on the accelerator with two collections each with 10×10
convolution kernels. A logarithmic scale is used on the y-axis.

Filter-bank
(0.39 G-ops/frame)

Face-detector
(0.41 G-ops/frame)

Object-tracker
(0.98 G-ops/frame)

0

1

2

3

4

5

6

7

8

9

P
e
rf

o
rm

a
n
ce

 p
e
r

w
a
tt

 (
G

o
p
s/

W
)

Power Efficiency vs. Application

Zynq ARM Cortex A9 667MHz

Intel Core i5 2.6GHz

NVIDIA GeForce GTX 690

HW Accelerator (This work)

Fig. 5. Performance per watt test over different networks in real-world
applications. Tested on the accelerator with two collections each with 10×10
convolution kernels. A linear scale is used on the y-axis.

during the entire computation. The face-detector and object-
tracker used in this work contains two and three network
layers, respectively. These applications have frequent memory
access as compared to the filter-bank. Hence, this results in
a performance drop which becomes significant for a deeper
network. The power consumption when running the benchmark
was measured to be 45.7 watts on the Intel CPU and 384 watts
on the GPU whereas our entire platform consumed a maximum
of 3.9 watts.

VI. CONCLUSION

We present an efficient implementation of a hardware
accelerator for deep convolutional neural networks. Our ac-
celerator is a scalable mobile platform that consumes less
than 4 W and gives a peak performance of 40G-ops/sec. We
describe a routing strategy that enables us to efficiently utilize
hardware resources to obtain high performance in real-world

applications. The platform’s portability combined with the
efficient routing strategy and low power make it feasible to use
this design in applications that require a mobile coprocessor
capable of running DCNNs in real-time.

ACKNOWLEDGMENT

This work is supported by Office of Naval Research (ONR)
grants 14PR02106-01 P00004 and MURI N000141010278.

REFERENCES

[1] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features:
Spatial pyramid matching for recognizing natural scene categories,” in
Computer Vision and Pattern Recognition, 2006 IEEE Computer Society
Conference on, vol. 2, 2006, pp. 2169–2178.

[2] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust
features (SURF),” Computer Vision and Image Understanding, vol. 110,
no. 3, pp. 346–359, Jun. 2008.

[3] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio, “Robust
object recognition with cortex-like mechanisms,” Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 29, no. 3, pp. 411–
426, 2007.

[4] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems, vol. 25, 2012.

[5] R. Socher, B. Huval, B. Bath, C. D. Manning, and A. Ng,
“Convolutional-recursive deep learning for 3d object classification,” in
Advances in Neural Information Processing Systems, 2012, pp. 665–
673.

[6] J. Jin, A. Dundar, J. Bates, C. Farabet, and E. Culurciello, “Tracking
with deep neural networks,” in Information Sciences and Systems
(CISS), 2013 47th Annual Conference on, March 2013, pp. 1–5.

[7] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” in Deep Learning, Neural Information Processing Systems
Workshop, 2013.

[8] M. Sankaradas, V. Jakkula, S. Cadambi, S. Chakradhar, I. Durdanovic,
E. Cosatto, and H. Graf, “A massively parallel coprocessor for convolu-
tional neural networks,” in Application-specific Systems, Architectures
and Processors, 2009. ASAP 2009. 20th IEEE International Conference
on, 2009, pp. 53–60.

[9] S. Cadambi, A. Majumdar, M. Becchi, S. Chakradhar, and H. P. Graf,
“A programmable parallel accelerator for learning and classification,” in
Proceedings of the 19th international conference on Parallel architec-
tures and compilation techniques, ser. PACT ’10, 2010, pp. 273–284.

[10] H. P. Graf, S. Cadambi, I. Durdanovic, V. Jakkula, M. Sankaradass,
E. Cosatto, and S. Chakradhar, “A massively parallel digital learning
processor,” in Advances in Neural Information Processing Systems,
2009, pp. 529–536.

[11] U. Kapasi, S. Rixner, W. Dally, B. Khailany, J. Ahn, P. Mattson, and
J. Owens, “Programmable stream processors,” Computer, vol. 36, no. 8,
pp. 54–62, Aug 2003.

[12] J. Cloutier, E. Cosatto, S. Pigeon, F.-R. Boyer, and P. Simard, “Vip:
an fpga-based processor for image processing and neural networks,”
in Microelectronics for Neural Networks, 1996., Proceedings of Fifth
International Conference on, 1996, pp. 330–336.

[13] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and
Y. LeCun, “Neuflow: A runtime reconfigurable dataflow processor
for vision,” in Computer Vision and Pattern Recognition Workshops
(CVPRW), 2011 IEEE Computer Society Conference on, 2011, pp. 109–
116.

[14] M. Peemen, A. Setio, B. Mesman, and H. Corporaal, “Memory-centric
accelerator design for convolutional neural networks,” in Computer
Design (ICCD), 2013 IEEE 31st International Conference on, Oct 2013,
pp. 13–19.

[15] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-like
environment for machine learning,” in BigLearn, Neural Information
Processing Systems Workshop, 2011.

